

Galangin and Pinocembrin from Propolis Relieve Insulin Resistance

Hongcheng Zhang

Institute of Apicultural Research,

Chinese Academy of Agricultural Sciences

460414874@qq.com

Evidence-Based Complementary and Alternative Medicine Volume 2018, Article ID 7971842, 10 pages https://doi.org/10.1155/2018/7971842

Research Article

Galangin and Pinocembrin from Propolis Ameliorate Insulin Resistance in HepG2 Cells via Regulating Akt/mTOR Signaling

Yinkang Liu,^{1,2} Xiali Liang,¹ Gensheng Zhang,² Lingjie Kong,^{1,3} Wenjun Peng,^{1,3} and Hongcheng Zhang,^{1,2,3}

¹Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China

Journal of Apicultural Research, 2017 https://doi.org/10.1080/00218839.2017.1373512

ORIGINAL RESEARCH ARTICLE

A plant origin of Chinese propolis: Populus canadensis Moench

Xue Wang^{a,b, I}, Hao Hu^{a,c, I}, Zhaoming Luo^a, Yinkang Liu^{a,b} and Hongcheng Zhang^{a,b,d}

^aInstitute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China; ^bCollege of Food Engineering, Harbin University of

Outline

- 1 Insulin Resistance
- 2 Chinese Propolis Phenolics
- Effects on Insulin Resistance
- 4 Akt/mTOR Signaling Pathway
- 5 Conclusion

1 Insulin Resistance

- In China, more than 92 million adults have diabetes, and 95 percent of them are type 2 diabetes.
- * T2DM is characterized by impairing pancreatic β -cell and insulin resistance in target organs
- **❖** Insulin resistance **represents a decreased sensitivity and reactivity** to insulin **in balancing and stabilizing glucose levels**
- * Insulin resistance can cause many **severe complications**, for example, hypertension, coronary heart disease, and so on.
- * The **treatments of insulin resistance** seem to be worthy of more attention and investigation.

1 Insulin Resistance

- Many studies show that propolis can regulate glucose and lipid metabolism in diabetic rats
- Brazilian green propolis also has therapy potential in insulin resistance
- In China, propolis has been approved to use in functional foods with a health claim of controlling glycemia in 1999 by the Ministry of Health
- Propolis has been accepted as therapy drugs for diabetes in 2005

2 Chinese Propolis Phenolics

- **❖** In China, Propolis is a resinous mixture that honey bees collect resin from populus tree buds.
- Chinese propolis is mainly from Populus canadensis
- Honeybees use propolis as a cement for small gaps in the hive
- Propolis biological properties can mainly be related with phenolic compounds

2 Chinese Propolis Phenolics

2 Chinese Propolis Phenolics

Main Composition	Average Contents (mg/g)
Benzyl Caffeate	25.47
Phenethyl Caffeate	12.03
Cinnamyl Caffeate	10.65
Cinnamyl p-Cinnamate	8.77
3-Acetate Pinobanksin	40.75
Chrysin	35.04
Pinocembrin	19.73
Galangin	12.99
Pinobanksin	12.15
5-Methoxy Pinobanksin	12.06

We collected and analyzed 98 samples from China

We find that characteristic components included 4 phenolic esters and 6 flavonoids.

The **four flavonoids represent 50%** of the total flavonoid contents

Glucose uptake in Insulin-Resistant HepG2 Cells

- Galangin and Pinocembrin can promote the glucose uptake of insulin stimulation groups
- Pinobanksin and Chrysin show no significant differences in the amount of glucose uptake— not ameliorate insulin resistance

Glycogen Synthesis in Insulin-Resistant HepG2 Cells

* Galangin and Pinocembrin can promote glycogen synthesis by 50% and 30%, respectively.

Hexokinase and Pyruvate Kinase in Insulin-Resistant HepG2 cells

Hexokinase and pyruvate kinases play a important role in glucose metabolism

Hexokinase and Pyruvate Kinase of Insulin-Resistant HepG2 cells

Galangin and Pinocembrin increase the activities of hexokinase and pyruvate kinase by 22% and 30%, respectively.

AKT / mTOR signaling pathway in Insulin-Resistant HepG2 Cells

- * Akt/mTOR is an important pathway of intracellular insulin transduction and energy metabolism in the liver
- * Akt/mTOR also plays a very important role in glycolysis

Galangin on AKT / mTOR signaling pathway in Insulin-Resistant HepG2 Cells

- * Galangin can significantly promote phosphorylation levels of IR, Akt, GSK3 α , and GSK3 β
- * significantly reduce IRS, mTOR, and RPS6 levels

Pinocembrin on AKT / mTOR signaling pathway in Insulin-Resistant HepG2 Cells

- Pinocembrin can significantly promote phosphorylation levels of IR, Akt, GSK3
- * significantly reduce IRS, PTEN, and p70S6K

We hypothesize that galangin and pinocembrin can synergistically relieve insulin resistance through regulating the protein phosphorylation of key Akt/mTOR signal proteins.

- We performed Molecular Docking between Galangin/Pinocembrin and Human Insulin Receptor (IR)
- Galangin and pinocembrin can change insulin receptor conformation by binding to the hydrophobic pocket of insulin receptor, therefore increasing insulin receptor sensitivity

5 Conclusions

- Pinobanksin and chrysin are ineffective for promoting glucose metabolism
- Galangin and pinocembrin can relieve insulin
 resistance by increasing the activities of hexokinase and
 pyruvate kinase, promoting glucose consumption and
 glycogen synthesis
- Galangin and pinocembrin may have a synergistic effect through Akt/mTOR signaling pathway

 Galangin and pinocembrin can change insulin receptor conformation to increase insulin receptor sensitivity